Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
J Natl Cancer Inst ; 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38466935

RESUMO

BACKGROUND: Lynch syndrome (LS) is a hereditary cancer predisposition syndrome caused by germline mutations in DNA mismatch repair (MMR) genes, which lead to high microsatellite instability (MSI-H) and frameshift mutations (FSMs) at coding mononucleotide repeats (cMNRs) in the genome. Recurrent FSMs in these regions are thought to play a central role in the increased risk of various cancers. However, there are no biomarkers currently available for the surveillance of MSI-H-associated cancers. METHODS: An FSM-based biomarker panel was developed and validated by targeted next generation sequencing of supernatant DNA from cultured MSI-H colorectal cancer cells. This supported selection of 122-FSM targets as potential biomarkers. This biomarker panel was then tested using matched tumor, adjacent normal tissue, and buffy coat (53 samples), and blood-derived cell-free DNA (cfDNA; 38 samples) obtained from 45 cases of MSI-H/MMR deficient (MMRd) patients/carriers. cfDNA from 84 healthy individuals was also sequenced to assess background noise. RESULTS: Recurrent FSMs at cMNRs were detectable not only in tumors, but also in cfDNA from MSI-H/MMRd cases including a LS carrier with a varying range of target detection (up to 85.2%), whereas they were virtually undetectable in healthy individuals. ROC analysis showed high sensitivity and specificity (AUC = 0.94) of the investigated panel. CONCLUSIONS: We demonstrated that FSMs can be detected in cfDNA from MSI-H/MMRd cases and asymptomatic carriers. The 122-target FSM panel described here has promise as a tool for improved surveillance of MSI-H/MMRd carriers with the potential to reduce the frequency of invasive screening methods for this high-cancer-risk cohort.

2.
J Biomed Inform ; 149: 104571, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38092247

RESUMO

Epidemiological models allow for quantifying the dynamic characteristics of large-scale outbreaks. However, capturing detailed and accurate epidemiological information often requires consideration of multiple kinetic mechanisms and parameters. Due to the uncertainty of pandemic evolution, such as pathogen variation, host immune response and changes in mitigation strategies, the parameter evaluation and state prediction of complex epidemiological models are challenging. Here, we develop a data-driven epidemic model with a generalized SEIR mechanistic structure that includes new compartments, human mobility and vaccination protection. To address the issue of model complexity, we embed the epidemiological model dynamics into physics-informed neural networks (PINN), taking the observed series of time instances as direct input of the network to simultaneously infer unknown parameters and unobserved dynamics of the underlying model. Using actual data during the COVID-19 outbreak in Australia, Israel, and Switzerland, our model framework demonstrates satisfactory performance in multi-step ahead predictions compared to several benchmark models. Moreover, our model infers time-varying parameters such as transmission rates, hospitalization ratios, and effective reproduction numbers, as well as calculates the latent period and asymptomatic infection count, which are typically unreported in public data. Finally, we employ the proposed data-driven model to analyze the impact of different mitigation strategies on COVID-19.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Pandemias/prevenção & controle , Surtos de Doenças/prevenção & controle , Incerteza , Vacinação
3.
Front Oncol ; 13: 1223915, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37746286

RESUMO

Background: Genome integrity is essential for the survival of an organism. DNA mismatch repair (MMR) genes (e.g., MLH1, MSH2, MSH6, and PMS2) play a critical role in the DNA damage response pathway for genome integrity maintenance. Germline mutations of MMR genes can lead to Lynch syndrome or constitutional mismatch repair deficiency syndrome, resulting in an increased lifetime risk of developing cancer characterized by high microsatellite instability (MSI-H) and high mutation burden. Although immunotherapy has been approved for MMR-deficient (MMRd) cancer patients, the overall response rate needs to be improved and other management options are needed. Methods: To better understand the biology of MMRd cancers, elucidate the resistance mechanisms to immune modulation, and develop vaccines and therapeutic testing platforms for this high-risk population, we generated organoids and an orthotopic mouse model from intestine tumors developed in a Msh2-deficient mouse model, and followed with a detailed characterization. Results: The organoids were shown to be of epithelial origin with stem cell features, to have a high frameshift mutation frequency with MSI-H and chromosome instability, and intra- and inter-tumor heterogeneity. An orthotopic model using intra-cecal implantation of tumor fragments derived from organoids showed progressive tumor growth, resulting in the development of adenocarcinomas mixed with mucinous features and distant metastasis in liver and lymph node. Conclusions: The established organoids with characteristics of MSI-H cancers can be used to study MMRd cancer biology. The orthotopic model, with its distant metastasis and expressing frameshift peptides, is suitable for evaluating the efficacy of neoantigen-based vaccines or anticancer drugs in combination with other therapies.

4.
ACS Appl Mater Interfaces ; 15(29): 34360-34377, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37432741

RESUMO

Having no specific therapy for triple-negative breast cancer (TNBC), this subtype has the lowest survival rate and highest metastatic risk of breast cancer since the tumor inflammatory microenvironment mainly accounts for heterogeneity-induced insensitivity to chemotherapy and epithelial-mesenchymal transition (EMT). This study reports hyaluronic acid (HA)-modified liposomes loaded with cisplatin (CDDP) and hesperetin (Hes) (CDDP-HA-Lip/Hes) for active targeting to relieve systematic toxicity and effective anti-tumor/anti-metastasis ability of TNBC. Our results revealed that HA modification promoted the cellular uptake of the synthesized CDDP-HA-Lip/Hes nanoparticles in MDA-MB-231 cells and accumulation in tumor sites in vivo, indicating deeper tumor penetration. Importantly, CDDP-HA-Lip/Hes inhibited the PI3K/Akt/mTOR pathway to alleviate the inflammation in the tumor and with a crosstalk to suppress the process of the EMT, increasing the chemosensitivity and inhibiting tumor metastasis. Meanwhile, CDDP-HA-Lip/Hes could significantly inhibit the aggression and metastasis of TNBC with less side effects on normal tissues. Overall, this study provides a tumor-targeting drug delivery system with great potential for treating TNBC and its lung metastasis robustly.


Assuntos
Cisplatino , Neoplasias de Mama Triplo Negativas , Humanos , Cisplatino/uso terapêutico , Lipossomos , Neoplasias de Mama Triplo Negativas/metabolismo , Ácido Hialurônico/uso terapêutico , Fosfatidilinositol 3-Quinases , Linhagem Celular Tumoral , Agressão , Microambiente Tumoral
5.
Physica A ; 609: 128337, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36440383

RESUMO

The complex dynamics of human mobility, combined with sporadic cases of local outbreaks, make assessing the impact of large-scale social distancing on COVID-19 propagation in China a challenge. In this paper, with the travel big dataset supported by Baidu migration platform, we develop a reactive-diffusion epidemic model on human mobility networks to characterize the spatio-temporal propagation of COVID-19, and a novel time-dependent function is incorporated into the model to describe the effects of human intervention. By applying the system control theory, we discuss both constant and time-varying threshold behavior of proposed model. In the context of population mobility-mediated epidemics in China, we explore the transmission patterns of COVID-19 in city clusters. The results suggest that human intervention significantly inhibits the high correlation between population mobility and infection cases. Furthermore, by simulating different population flow scenarios, we reveal spatial diffusion phenomenon of cases from cities with high infection density to cities with low infection density. Finally, our model exhibits acceptable prediction performance using actual case data. The localized analytical results verify the ability of the PDE model to correctly describe the epidemic propagation and provide new insights for controlling the spread of COVID-19.

6.
Artigo em Inglês | MEDLINE | ID: mdl-36387361

RESUMO

The Tripartite Motif Containing 44 (TRIM44) is highly expressed in a variety of tumours. However, the TRIM44's role in endometrial carcinoma (EC) progression remains unknown. To investigate the TRIM44's role in the development and metastasis of EC, we detected TRIM44 expression in EC cell lines and surgical specimens from patients with EC using immunohistochemistry, real-time reverse transcription-polymerase chain reaction, and western blotting analysis. The biological functions of TRIM44 by loss-of-function analysis in RL95-2 and Ishikawa cells were studied. The effect of TRIM44 on the progression of EC in terms of cell proliferation, apoptosis, and invasion was examined and revealed its underlying mechanism in vitro using EC cell lines and in vivo using mouse xenograft models. The TRIM44's expression was positively correlated with EC progression and poor prognosis. The TRIM44 knockdown reduced the EC cell proliferation and invasion while promoting cell apoptosis. Mechanism experiments showed that the TRIM44 interacts with Fibroblast Growth Factor Receptor Substrate 2 (FRS2) and negatively regulates the expression of Bone Morphogenetic Protein 4(BMP4), ß-catenin, and Transforming Growth Factor Beta Receptor 1(TGF-ßR1). Moreover, the effect of TRIM44 overexpression on EC cell proliferation, invasion, and apoptosis is reversed by the FRS2 knockdown. Our study may provide a new perspective on targeting the TRIM44/FRS2 signaling pathway in treating EC, which deserves further investigation.

7.
Cancer Res Commun ; 2(2): 90-98, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35992328

RESUMO

Early-onset colorectal cancer (EOCRC), defined as a diagnosis under age 50, is an emerging public health burden. As many of these individuals fall outside of screening guidelines, the development of a minimally invasive, accurate screening modality for this population is warranted. We evaluated the FDA-approved blood-based biomarker methylated Septin9 (mSEPT9) test as screening tool for EOCRC. EOCRC plasma, healthy plasma, and serum-free conditioned media from cancer cell lines was collected. Cell-free DNA (cfDNA) was isolated and bisulfite converted for use in the assay. mSEPT9 and ACTB measured using Epi proColon® V2.0. EOCRC plasma was collected at Massachusetts General Hospital (2005-2019) and controls were collected at the National Institutes of Health and by ZenBio Inc. (prior to 2019). Twenty-seven EOCRC cases, 48 healthy controls <50 years old, and 39 healthy controls ≥50 years old were included in this study. mSEPT9 was detected more frequently in EOCRC cases (88.9%) compared to healthy controls age <50 (4.2%) and ≥50 (15.4%), respectively (p<0.001). The sensitivity, specificity, positive predictive value, and negative predictive values of the mSEPT9 assay to detect EOCRC was 90.8% (95% CI: 84.7-96.9%), 88.9% (95% CI: 77.0-100.0%), 96.3% (95% CI: 92.3-100.0%), and 75.0% (95% CI 60.0-90.0%), respectively, compared to all healthy controls. mSEPT9 cfDNA level was an independent predictor of survival (p=0.02). mSEPT9 is a sensitive and specific biomarker for EOCRC detection. These results suggest that mSEPT9 may be useful in the detection of EOCRC, providing a minimally invasive method for screening in this growing population of CRC patients.


Assuntos
Ácidos Nucleicos Livres , Neoplasias Colorretais , Humanos , Pessoa de Meia-Idade , Neoplasias Colorretais/diagnóstico , Biomarcadores Tumorais/genética , Septinas/genética , Detecção Precoce de Câncer/métodos
8.
Front Oncol ; 12: 904479, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35814428

RESUMO

Glioblastoma (GBM) remains lethal with no effective treatments. Despite the comprehensive identification of commonly perturbed molecular pathways, little is known about the disease's etiology, particularly in early stages. Several studies indicate that GBM is initiated in neural progenitor and/or stem cells. Here, we report that differentiated astrocytes are susceptible to GBM development when initiated by perturbation of the RB pathway, which induces a progenitor phenotype. In vitro and in vivo inactivation of Rb tumor suppression (TS) induces cortical astrocytes to proliferate rapidly, express progenitor markers, repress differentiation markers, and form self-renewing neurospheres that are susceptible to multi-lineage differentiation. This phenotype is sufficient to cause grade II astrocytomas which stochastically progress to GBM. Together with previous findings, these results demonstrate that cell susceptibility to GBM depends on the initiating driver.

9.
Cancers (Basel) ; 14(13)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35804881

RESUMO

Malignant mesothelioma (MMe) is a rare malignancy originating from the linings of the pleural, peritoneal and pericardial cavities. The best-defined risk factor is exposure to carcinogenic mineral fibers (e.g., asbestos). Genomic studies have revealed that the most frequent genetic lesions in human MMe are mutations in tumor suppressor genes. Several genetically engineered mouse models have been generated by introducing the same genetic lesions found in human MMe. However, most of these models require specialized breeding facilities and long-term exposure of mice to asbestos for MMe development. Thus, an alternative model with high tumor penetrance without asbestos is urgently needed. We characterized an orthotopic model using MMe cells derived from Cdkn2a+/-;Nf2+/- mice chronically injected with asbestos. These MMe cells were tumorigenic upon intraperitoneal injection. Moreover, MMe cells showed mixed chromosome and microsatellite instability, supporting the notion that genomic instability is relevant in MMe pathogenesis. In addition, microsatellite markers were detectable in the plasma of tumor-bearing mice, indicating a potential use for early cancer detection and monitoring the effects of interventions. This orthotopic model with rapid development of MMe without asbestos exposure represents genomic instability and specific molecular targets for therapeutic or preventive interventions to enable preclinical proof of concept for the intervention in an immunocompetent setting.

10.
Front Pharmacol ; 13: 849101, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35712709

RESUMO

Rheumatoid arthritis (RA) is a chronic inflammatory disease, characterized by synovial inflammation in multiple joints. Triptolide (TP) is a disease-modifying anti-rheumatic drug (DMARD) highly effective in patients with RA and has anti-inflammatory properties. However, its clinical application has been limited owing to practical disadvantages. In the present study, hyaluronic acid (HA) hydrogel-loaded RGD-attached gold nanoparticles (AuNPs) containing TP were synthesized to alleviate the toxicity and increase therapeutic specificity. The hydrogels can be applied for targeted photothermal-chemo treatment and in vivo imaging of RA. Hydrogel systems with tyramine-modified HA (TA-HA) conjugates have been applied to artificial tissue models as surrogates of cartilage to investigate drug transport and release properties. After degradation of HA chains, heat was locally generated at the inflammation region site due to near-infrared resonance (NIR) irradiation of AuNPs, and TP was released from nanoparticles, delivering heat and drug to the inflamed joints simultaneously. RA can be penetrated with NIR light. Intraarticular administration of the hydrogels containing low dosage of TP with NIR irradiation improved the inflamed conditions in mice with collagen-induced arthritis (CIA). Additionally, in vitro experiments were applied to deeply verify the antirheumatic mechanisms of TP-PLGA-Au@RGD/HA hydrogels. TP-PLGA-Au@RGD/HA hydrogel treatment significantly reduced the migratory and invasive capacities of RA fibroblast-like synoviocytes (RA-FLS) in vitro, through the decrease of phosphorylation of mTOR and its substrates, p70S6K1, thus inhibiting the mTOR pathway.

11.
J Biol Chem ; 298(4): 101756, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35202652

RESUMO

Methotrexate (MTX) is the first-line treatment for rheumatoid arthritis (RA). However, after long-term treatment, some patients develop resistance. P-glycoprotein (P-gp), as an indispensable drug transporter, is essential for mediating this MTX resistance. In addition, nobiletin (NOB), a naturally occurring polymethoxylated flavonoid, has also been shown to reverse P-gp-mediated MTX resistance in RA groups; however, the precise role of NOB in this process is still unclear. Here, we administered MTX and NOB alone or in combination to collagen II-induced arthritic (CIA) mice and evaluated disease severity using the arthritis index, synovial histopathological changes, immunohistochemistry, and P-gp expression. In addition, we used conventional RNA-seq to identify targets and possible pathways through which NOB reverses MTX-induced drug resistance. We found that NOB in combination with MTX could enhance its performance in synovial tissue and decrease P-gp expression in CIA mice compared to MTX treatment alone. In vitro, in MTX-resistant fibroblast-like synoviocytes from CIA cells (CIA-FLS/MTX), we show that NOB treatment downregulated the PI3K/AKT/HIF-1α pathway, thereby reducing the synthesis of the P-gp protein. In addition, NOB significantly inhibited glycolysis and metabolic activity of CIA-FLS/MTX cells, which could reduce the production of ATP and block P-gp, ultimately decreasing the efflux of MTX and maintaining its anti-RA effects. In conclusion, this study shows that NOB overcomes MTX resistance in CIA-FLS/MTX cells through the PI3K/AKT/HIF-1α pathway, simultaneously influencing metabolic processes and inhibiting P-gp-induced drug efflux.


Assuntos
Artrite Experimental , Artrite Reumatoide , Resistência a Medicamentos , Flavonas , Biossíntese de Proteínas , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Resistência a Medicamentos/efeitos dos fármacos , Fibroblastos/metabolismo , Flavonas/farmacologia , Flavonas/uso terapêutico , Expressão Gênica/efeitos dos fármacos , Humanos , Metotrexato/farmacologia , Camundongos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Inibidores da Síntese de Proteínas/farmacologia , Inibidores da Síntese de Proteínas/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo
12.
Front Oncol ; 11: 747300, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34604090

RESUMO

BACKGROUND: Although notable therapeutic and prognostic benefits of compound kushen injection (CKI) have been found when it was used alone or in combination with chemotherapy or radiotherapy for triple-negative breast cancer (TNBC) treatment, the effects of CKI on TNBC microenvironment remain largely unclear. This study aims to construct and validate a predictive immunotherapy signature of CKI on TNBC. METHODS: The UPLC-Q-TOF-MS technology was firstly used to investigate major constituents of CKI. RNA sequencing data of CKI-perturbed TNBC cells were analyzed to detect differential expression genes (DEGs), and the GSVA algorithm was applied to explore significantly changed pathways regulated by CKI. Additionally, the ssGSEA algorithm was used to quantify immune cell abundance in TNBC patients, and these patients were classified into distinct immune infiltration subgroups by unsupervised clustering. Then, prognosis-related genes were screened from DEGs among these subgroups and were further overlapped with the DEGs regulated by CKI. Finally, a predictive immunotherapy signature of CKI on TNBC was constructed based on the LASSO regression algorithm to predict mortality risks of TNBC patients, and the signature was also validated in another TNBC cohort. RESULTS: Twenty-three chemical components in CKI were identified by UPLC-Q-TOF-MS analysis. A total of 3692 DEGs were detected in CKI-treated versus control groups, and CKI significantly activated biological processes associated with activation of T, natural killer and natural killer T cells. Three immune cell infiltration subgroups with 1593 DEGs were identified in TNBC patients. Then, two genes that can be down-regulated by CKI with hazard ratio (HR) > 1 and 26 genes that can be up-regulated by CKI with HR < 1 were selected as key immune- and prognosis-related genes regulated by CKI. Lastly, a five-gene prognostic signature comprising two risky genes (MARVELD2 and DYNC2I2) that can be down-regulated by CKI and three protective genes (RASSF2, FERMT3 and RASSF5) that can be up-regulated by CKI was developed, and it showed a good performance in both training and test sets. CONCLUSIONS: This study proposes a predictive immunotherapy signature of CKI on TNBC, which would provide more evidence for survival prediction and treatment guidance in TNBC as well as a paradigm for exploring immunotherapy biomarkers in compound medicines.

13.
Zhongguo Zhong Yao Za Zhi ; 46(12): 3165-3170, 2021 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-34467709

RESUMO

Nucleic acid aptamers, broad-spectrum target-specific single-stranded oligonucleotides, serve as molecules in targeted therapy, targeted delivery and disease diagnosis for the treatment of tumor or microbial infection and clinical detection. Due to the existence of components in the use of traditional Chinese medicine(TCM), the target is difficult to concentrate and the specificity of treatment is poor. The effective components of TCM are toxic components, so a highly sensitive detection method is urgently needed to reduce the toxicity problem at the same time. The combined application of TCM and modern medical treatment strategy are difficult and cannot improve the therapeutic effect. Aptamers, advantageous in biosensors, aptamer-nanoparticles for targeted drug delivery, and aptamer-siRNA chimeras, are expected to connect Chinese medicinals with nanotechnology, diagnostic technology and combined therapies. We summarized the preparation, screening, and modification techniques of nucleic acid aptamers and the biomedical applications and advantages in therapy, targeting, and diagnosis, aiming at providing a reference for the in-depth research and development in TCM.


Assuntos
Aptâmeros de Nucleotídeos , Ácidos Nucleicos , Sistemas de Liberação de Medicamentos , Medicina Tradicional Chinesa , RNA Interferente Pequeno
14.
Am J Cancer Res ; 11(7): 3445-3460, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34354854

RESUMO

Paclitaxel is a widely used anti-tumor chemotherapeutic drug. Solvent-based paclitaxel causes bone marrow suppression, allergic reactions, neurotoxicity and systemic toxicity, which are associated with non-specific cytotoxicity and side effects of fat-soluble solvents. Studies have explored various new nano-drug strategies of paclitaxel, including nanoparticle albumin-bound paclitaxel (nab-paclitaxel) to improve the water solubility and safety of paclitaxel. Nab-paclitaxel is a targeted solvent-free formulation that inhibits microtubule depolymerization to anticancer. It is easily taken up by tumor and immune cells owing to the nano-scaled size and superior biocompatibility. The internalized nab-paclitaxel exhibits significant immunostimulatory activities to promote cancer-immunity cycle. The aim of this study was to explore the synergistic effect of nab-paclitaxel in tumor antigen presentation, T cell activation, reversing the immunosuppressive pattern of tumor microenvironment (TME), and the synergistic effect with cytotoxic lymphocytes (CTLs) in clearance of tumor cells. The effects of nab-paclitaxel on modulation of cancer-immunity cycle, provides potential avenues for combined therapeutic rationale to improve efficacy of immunotherapy.

15.
Gastroenterology ; 161(4): 1288-1302.e13, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34224739

RESUMO

BACKGROUND & AIMS: DNA mismatch repair deficiency drives microsatellite instability (MSI). Cells with MSI accumulate numerous frameshift mutations. Frameshift mutations affecting cancer-related genes may promote tumorigenesis and, therefore, are shared among independently arising MSI tumors. Consequently, such recurrent frameshift mutations can give rise to shared immunogenic frameshift peptides (FSPs) that represent ideal candidates for a vaccine against MSI cancer. Pathogenic germline variants of mismatch repair genes cause Lynch syndrome (LS), a hereditary cancer syndrome affecting approximately 20-25 million individuals worldwide. Individuals with LS are at high risk of developing MSI cancer. Previously, we demonstrated safety and immunogenicity of an FSP-based vaccine in a phase I/IIa clinical trial in patients with a history of MSI colorectal cancer. However, the cancer-preventive effect of FSP vaccination in the scenario of LS has not yet been demonstrated. METHODS: A genome-wide database of 488,235 mouse coding mononucleotide repeats was established, from which a set of candidates was selected based on repeat length, gene expression, and mutation frequency. In silico prediction, in vivo immunogenicity testing, and epitope mapping was used to identify candidates for FSP vaccination. RESULTS: We identified 4 shared FSP neoantigens (Nacad [FSP-1], Maz [FSP-1], Senp6 [FSP-1], Xirp1 [FSP-1]) that induced CD4/CD8 T cell responses in naïve C57BL/6 mice. Using VCMsh2 mice, which have a conditional knockout of Msh2 in the intestinal tract and develop intestinal cancer, we showed vaccination with a combination of only 4 FSPs significantly increased FSP-specific adaptive immunity, reduced intestinal tumor burden, and prolonged overall survival. Combination of FSP vaccination with daily naproxen treatment potentiated immune response, delayed tumor growth, and prolonged survival even more effectively than FSP vaccination alone. CONCLUSIONS: Our preclinical findings support a clinical strategy of recurrent FSP neoantigen vaccination for LS cancer immunoprevention.


Assuntos
Antígenos de Neoplasias/farmacologia , Vacinas Anticâncer/farmacologia , Neoplasias Colorretais Hereditárias sem Polipose/tratamento farmacológico , Mutação da Fase de Leitura , Fenômenos Imunogenéticos , Fragmentos de Peptídeos/farmacologia , Adjuvantes Imunológicos/farmacologia , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/genética , Vacinas Anticâncer/imunologia , Neoplasias Colorretais Hereditárias sem Polipose/genética , Neoplasias Colorretais Hereditárias sem Polipose/imunologia , Neoplasias Colorretais Hereditárias sem Polipose/patologia , Bases de Dados Genéticas , Modelos Animais de Doenças , Epitopos , Imunidade Celular/efeitos dos fármacos , Imunidade Humoral/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 2 Homóloga a MutS/genética , Naproxeno/farmacologia , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/imunologia , Carga Tumoral/efeitos dos fármacos , Microambiente Tumoral , Vacinação , Eficácia de Vacinas
16.
Eur J Med Chem ; 221: 113519, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-33984805

RESUMO

Arsenic (As), as well as its various compounds have been widely used for nearly 4000 years either as drugs or poisons. These compounds are valuable in the treatment of various diseases ranging from dermatosis to cancer, thereby emphasizing their important roles as therapeutic agents. The ability of As compounds, especially arsenic trioxide (ATO) in the treatment of acute promyelocytic leukemia (APL), has fundamentally altered people's understanding of the poison, and has become a major factor in the re-emergence of Western medicine candidates to treat leukemia and other solid tumors. However, long-term exposure to As has been correlated with numerous disadvantageous influences on health, particularly carcinogenesis. Importantly, accumulating evidence suggests that biotransformation of As, as a step to eliminate As from the human body, can induce alterations at the genetic and epigenetic levels, resulting in therapeutic effects or carcinogenesis. In this article, we aimed to provide a systematic overview of the primary contributions associated with As and its compounds, as well as the detailed mechanisms applied in APL cells and carcinogenic toxicology. This review may help to understand the underlying mechanisms and safe wide clinical applications of medicinal As along with its compounds.


Assuntos
Antineoplásicos/uso terapêutico , Arsenicais/uso terapêutico , Leucemia Promielocítica Aguda/tratamento farmacológico , Antineoplásicos/efeitos adversos , Arsenicais/efeitos adversos , Humanos , Leucemia Promielocítica Aguda/metabolismo
17.
Clin Pharmacokinet ; 60(5): 585-601, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33723723

RESUMO

Drug metabolism is a critical process for the removal of unwanted substances from the body. In humans, approximately 80% of oxidative metabolism and almost 50% of the overall elimination of commonly used drugs can be attributed to one or more of various cytochrome P450 (CYP) enzymes from CYP families 1-3. In addition to the basic metabolic effects for elimination, CYP enzymes in vivo are capable of affecting the treatment outcomes in many cases. Drug-metabolizing CYP enzymes are mainly expressed in the liver and intestine, the two principal drug oxidation and elimination organs, where they can significantly influence the drug action, safety, and bioavailability by mediating phase I metabolism and first-pass metabolism. Furthermore, CYP-mediated local drug metabolism in the sites of action may also have the potential to impact drug response, according to the literature in recent years. This article underlines the ability of CYP enzymes to influence treatment outcomes by discussing CYP-mediated diversified drug metabolism in primary metabolic sites (liver and intestine) and typical action sites (brain and tumors) according to their expression levels and metabolic activity. Moreover, intrinsic and extrinsic factors of personal differential CYP phenotypes that contribute to interindividual variation of treatment outcomes are also reviewed to introduce the multifarious pivotal role of CYP-mediated metabolism and clearance in drug therapy.


Assuntos
Sistema Enzimático do Citocromo P-450 , Preparações Farmacêuticas , Humanos , Fígado , Microssomos Hepáticos , Resultado do Tratamento
18.
Pharmacol Res ; 165: 105371, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33460792

RESUMO

Drug-induced nephrotoxicity is a frequent adverse event that contributes to acute kidney injury with tubular and/or glomerular lesions. Methotrexate (MTX) is a folate analog used against a myriad of malignancies and autoimmune diseases. Unfortunately, ambiguous renal toxicology limits its safe clinical usage. Based on our previous studies, 7-OH MTX as an overlooked oxidative metabolite of MTX was proposed to be the main culprit responsible for nephrotoxicity, while nobiletin, a naturally occurring polymethoxylated flavonoid screened from our prepared total phenolic extracts of Citrus aurantium L. (TPE-CA), was employed as a therapeutic agent for drug-drug interactions. According to the present study, nobiletin can ameliorate the renal accumulation of 7-OH MTX through the interaction with aldehyde oxidase. RNA-seq analysis revealed that 7-OH MTX was mainly related to protein processing in endoplasmic reticulum (ER) stress, with the PERK/CHOP pathway selected as the most significant for metabolic nephrotoxicity. Meanwhile, the cross-linked proteins and conducted signals were investigated by western blotting and further verified by GSK inhibition analyses. These results indicated that nobiletin protected renal function from MTX-induced nephrotoxicity by modulating metabolism and ameliorated the metabolic toxicity of 7-OH MTX on ER stress-induced PERK/CHOP conduction by maintaining Ca2+ homeostasis and reducing the production of reactive oxygen species.


Assuntos
Injúria Renal Aguda/induzido quimicamente , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Metotrexato/análogos & derivados , Metotrexato/toxicidade , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição CHOP/metabolismo , eIF-2 Quinase/metabolismo , Injúria Renal Aguda/patologia , Animais , Cálcio/metabolismo , Interações Medicamentosas , Flavonas , Citometria de Fluxo , Imunofluorescência , Masculino , Metotrexato/antagonistas & inibidores , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo
19.
J Adv Res ; 34: 137-147, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-35024186

RESUMO

Introduction: Endothelial damage (ED) has been implicated in accelerating the development of atherosclerosis. The latter condition is a risk factor for developing several cardiovascular diseases (CVDs) associated with high morbidity and mortality rates worldwide. Objectives: In our previous studies, we found naringenin (Nar), a bioactive flavanone compound, to protect against mitochondrial damage and oxidative stress. Though the pleiotropic effects of Nar have been well described, precise cytoprotective mechanisms of Nar against homocysteine (Hcy) induced ED remains elusive. Understanding these events may give an insight in to prevention and treatment of CVDs. Methods: After ruling out the NMDA-R1 mediated pathway, RNA-Seq, a novel transcriptomic technique uncovered AMPK signaling pathway was identified as the mechanism with which Nar corrects ED. Further in vivo and in vitro tests validated the role of Nar against ED. Results: In particular, Nar activates AMPKα/Sirt1 signaling pathway, which restores mitochondrial Ca2+ balance and ultimately lowered production of reactive oxygen species (ROS). Activated AMPKα/Sirt1 signaling pathway also up-regulates endothelial nitric oxide synthase (eNOS) activity, and then increasing the production of nitric oxide (NO), ultimately ameliorating ED. Conclusion: Nar could increase the ROS elimination and decrease eNOS uncoupling, subsequently upregulate the NO bioavailability and endothelial function by activating AMPKα/Sirt1 signaling pathway.


Assuntos
Flavanonas , Sirtuína 1 , Proteínas Quinases Ativadas por AMP/genética , Flavanonas/farmacologia , Homocisteína , Sirtuína 1/genética
20.
Int J Nanomedicine ; 15: 8369-8382, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33149581

RESUMO

INTRODUCTION: Auraptene (AUR), a natural bioactive prenyloxy coumarin, is a highly pleiotropic molecule that can bind to the MT1 receptor and can effectively reduce the proliferation and migration of breast cancer cells. Cisplatin (CDDP), as the first synthetic platinum-based anticancer drug, is widely used in the clinic due to its definite mechanism and therapeutic effect on diverse tumors. However, both of AUR and CDDP exhibit some disadvantages when used alone, including poor solubility, low bioavailability, lack of selectivity and systemic toxicity when they are used singly. METHODS: Therefore, the biodegradable materials hyaluronic acid (HA) and ß-cyclodextrin derivative (mono-(6-amino-mono-6-deoxy)-ß-CD, CD) were employed as carriers to load AUR and CDDP to form nanogel (CDDPHA-CD@AUR) capable of dual-targeted delivery and synergistic therapy for breast cancer and cell imaging. RESULTS: With the help of the CDDP-crosslinked CD-loaded structure, the newly synthesized nanogel exhibited excellent physiological stability and fluorescence effects. The release of AUR and CDDP was affected by the pH value, which was beneficial to the selective release in the tumor microenvironment. Cell experiments in vitro demonstrated that the nanogel could be selectively internalized by MCF-7 cells and exhibited low cytotoxicity to HK-2 cells. Antitumor experiments in vivo showed that the nanogel have better antitumor effects and lower systemic toxicity. CONCLUSION: Based on these, the nanogel loaded with AUR and CDDP have the potential for targeted delivery against breast cancer.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Cisplatino/administração & dosagem , Cisplatino/uso terapêutico , Cumarínicos/administração & dosagem , Cumarínicos/uso terapêutico , Nanogéis/química , Animais , Neoplasias da Mama/patologia , Morte Celular , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Endocitose , Feminino , Hemólise , Humanos , Ácido Hialurônico/química , Concentração de Íons de Hidrogênio , Células MCF-7 , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanogéis/ultraestrutura , Especificidade de Órgãos , Tamanho da Partícula , Polietilenoglicóis/química , Polietilenoimina/química , Coelhos , Espectrometria de Fluorescência , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...